Arithmetic Additive Identity Arithmetic Progression Associative Property Averages Brackets Closure Property Commutative Property Conversion of Measurement Units Cube Root Decimal Distributivity of Multiplication over Addition Divisibility Principles Equality Exponents Factors Fractions Fundamental Operations H.C.F / G.C.D Integers L.C.M Multiples Multiplicative Identity Multiplicative Inverse Numbers Percentages Profit and Loss Ratio and Proportion Simple Interest Square Root Unitary Method
Algebra Cartesian System Order Relation Polynomials Probability Standard Identities & their applications Transpose
Geometry Basic Geometrical Terms Circle Curves Angles Define Line, Line Segment and Rays Non-Collinear Points Parallelogram Rectangle Rhombus Square Three dimensional object Trapezium Triangle Quadrilateral
Trigonometry Trigonometry Ratios
Data-Handling Arithmetic Mean Frequency Distribution Table Graphs Median Mode Range
Videos
Solved Problems
|
Home >> Trigonometry Ratios >> T Ratios of Angles - 30, 45, 60 & 90 degree angles >> T Ratios of Angles - 30, 45, 60 & 90 degree angles in Trigonometry
Table for T ratios of 0°, 30°, 45° 60° 90°
| Write down the angles in order | 0° | 30° | 45° | 60° | 90° | | Put down the number 0, 1, 2, 3, 4 | 0 | 1 | 2 | 3 | 4 | | Divide each number by 4 | 0 4 | 1 4 | 2 4 | 3 4 | 4 4 | | Take Square roots | √ 0 / 4 | √ 1 / 4 | √ 2 / 4 | √ 3 / 4 | √ 4 / 4 | Simplify and we get value of Sin θ | Sin θ | 0 | 1 2 | 1 √2 | √3 2 | 1 | Values in reverse order are those of Cos θ | Cos θ | 1 | √3 2 | 1 √2 | 1 2 | 0 | Divide values of Sin θ by those of Cos θ | Tan Θ | 0 | 1 √ 3 | 1 | √ 3 | ∞ | Take reciprocals of the values of Tan θ | Cot θ | ∞ | √ 3 | 1 | 1 √ 3 | 0 | Take reciprocals values of Cos θ | Sec θ | 1 | 2 √ 3 | √ 2 | 2 | ∞ | Rake reciprocals of the values of Sin θ | Cosec θ | ∞ | 2 | √ 2 | 2 √ 3 | 1 |
Let's try out some examples using the above table
Example - 1 : Find Cosec2 30° Sin2 - 45° - Sec2 60°
Solution : According to T ratio table the cosec, sin and sec degree values are
Cosec 30° = 2
Sec 60° = 2
we get the following equation
= (2)2 x ( 1 / √ 2 )2 - (2)2
= 2 - 4 = -2
Example - 2 : Find sin 30° cos 45° + cos 30° sin 45°
Solution - According to T ratio table the sin, cos degree values are
we get the following equation
1 2 | x | 1 √ 2 | + | √ 3 2 | x | 1 √ 2 |
Study More Solved Questions / Examples
Find Cosec2 90° Sin2 45° - Sec2 60° |
Find Cosec2 30° + Sin2 45° - Sec2 60° |
Find Sec2 60° + Cos2 45° - Cosec2 30° |
Find Sec2 60° Cos2 45° Cosec2 30° |
Find Tan 30° sec 45° + tan 60° sec 30° |
Find Cosec 90° Sin2 45° - Sec 60° |
Find Cos 30° Cos 45° + Sin 30° Sin 45° |
Find Tan 60° Cosec2 45° + Sec2 60° Tan 45° |
Find Sin 90° Tan 45° Sec 60° |
Find Sin 90° + Tan 45° + Sec 60° |
| |
|