Arithmetic
Additive Identity
Arithmetic Progression
Associative Property
Averages
Brackets
Closure Property
Commutative Property
Conversion of Measurement Units
Cube Root
Decimal
Distributivity of Multiplication over Addition
Divisibility Principles
Equality
Exponents
Factors
Fractions
Fundamental Operations
H.C.F / G.C.D
Integers
L.C.M
Multiples
Multiplicative Identity
Multiplicative Inverse
Numbers
Percentages
Profit and Loss
Ratio and Proportion
Simple Interest
Square Root
Unitary Method
Algebra
Cartesian System
Order Relation
Polynomials
Probability
Standard Identities & their applications
Transpose
Geometry
Basic Geometrical Terms
Circle
Curves
Angles
Define Line, Line Segment and Rays
Non-Collinear Points
Parallelogram
Rectangle
Rhombus
Square
Three dimensional object
Trapezium
Triangle
Quadrilateral
Trigonometry
Trigonometry Ratios
Data-Handling
Arithmetic Mean
Frequency Distribution Table
Graphs
Median
Mode
Range

Videos
Solved Problems
Home >> Trigonometry Ratios >> T Ratios of Angles - 30, 45, 60 & 90 degree angles >>

T Ratios of Angles - 30, 45, 60 & 90 degree angles in Trigonometry

T Ratios of Angles - 30, 45, 60 & 90 degree angles Find Height, Distance using T - Ratios

Table for T ratios of 0°, 30°, 45° 60° 90°

Write down the angles in order30°45°60°90°
Put down the number 0, 1, 2, 3, 4 01234
Divide each number by 40
4
1
4
2
4
3
4
4
4
Take Square roots 0 / 4  1 / 4  2 / 4  3 / 4  4 / 4 
Simplify and we get value of Sin θSin θ01
2
  1
2
3
  2
1
Values in reverse order are those of Cos θ Cos θ 1 3
  2
  1
2
1
2
0
Divide values of Sin θ by those of Cos θ Tan Θ 0   1
 3 
1  3 
Take reciprocals of the values of Tan θ Cot θ  3  1  1
 3 
0
Take reciprocals values of Cos θ Sec θ 1   2  
 3 
 2  2
Rake reciprocals of the values of Sin θ Cosec θ 2  2   2  
 3 
1


Let's try out some examples using the above table

Example - 1 : Find Cosec2 30° Sin2 - 45° - Sec2 60°
Solution : According to T ratio table the cosec, sin and sec degree values are

Cosec 30° = 2

Sin 45° =    1  
 2 


Sec 60° = 2

we get the following equation

= (2)2 x ( 1 /  2  )2 - (2)2

4 x 1
2
- 4


= 2 - 4 = -2




Example - 2 : Find sin 30° cos 45° + cos 30° sin 45°
Solution - According to T ratio table the sin, cos degree values are

Sin 30° = 1
2


Cos 45° =    1  
 2 


Sin 45° =    1  
 2 


we get the following equation

1
2
x    1   
 2 
+  3 
   2
x    1   
 2 


   1   
2 √ 2 
+  3 
2 √ 2 


1 +  3 

  2 √ 2 


Study More Solved Questions / Examples

  • Find Cosec2 90° Sin2 45° - Sec2 60°
  • Find Cosec2 30° + Sin2 45° - Sec2 60°
  • Find Sec2 60° + Cos2 45° - Cosec2 30°
  • Find Sec2 60° Cos2 45° Cosec2 30°
  • Find Tan 30° sec 45° + tan 60° sec 30°
  • Find Cosec 90° Sin2 45° - Sec 60°
  • Find Cos 30° Cos 45° + Sin 30° Sin 45°
  • Find Tan 60° Cosec2 45° + Sec2 60° Tan 45°
  • Find Sin 90° Tan 45° Sec 60°
  • Find Sin 90° + Tan 45° + Sec 60°
  • Copyright@2022 Algebraden.com (Math, Algebra & Geometry tutorials for school and home education)