Arithmetic Additive Identity Arithmetic Progression Associative Property Averages Brackets Closure Property Commutative Property Conversion of Measurement Units Cube Root Decimal Distributivity of Multiplication over Addition Divisibility Principles Equality Exponents Factors Fractions Fundamental Operations H.C.F / G.C.D Integers L.C.M Multiples Multiplicative Identity Multiplicative Inverse Numbers Percentages Profit and Loss Ratio and Proportion Simple Interest Square Root Unitary Method
Algebra Cartesian System Order Relation Polynomials Probability Standard Identities & their applications Transpose
Geometry Basic Geometrical Terms Circle Curves Angles Define Line, Line Segment and Rays Non-Collinear Points Parallelogram Rectangle Rhombus Square Three dimensional object Trapezium Triangle Quadrilateral
Trigonometry Trigonometry Ratios
Data-Handling Arithmetic Mean Frequency Distribution Table Graphs Median Mode Range
Videos
Solved Problems
|
Home >> Standard Identities & their applications >> (a - b)3 = a3 - b3 - 3ab(a - b) >> Examples (A - B) Cube : Solved Examples
Solve the following equations using (A - B) Cube formula
A) (2x - 3y)3
B) (5x - 4y)3
C) (9x - 5y)3
D) (13x - 7y)3
E) (15x - 9y)3
F) (17x - 11y)3
G) (19x - 13y)3 |
A) (2x - 3y)3
Apply the value to identity i.e. (a - b)3 = a3 - b3 - 3a2b + 3ab2
(2x - 3y)3 = (2x)3 - (3y)3 - 3(2x)2 (3y) + 3(2x)(3y)2
Solve the exponential forms
= 8x3 - 27y3 - 3(4x2) (3y) + 3(2x)(9y2)
Solve multiplication process and we get:
= 8x3 - 27y3 - 36x2y + 54xy2
Hence (2x - 3y)3 = 8x3 - 27y3 - 36x2y + 54xy2
B) (5x - 4y)3
Apply the value to identity i.e. (a - b)3 = a3 - b3 - 3a2b + 3ab2
(5x - 4y)3 = (5x)3 - (4y)3 - 3(5x)2 (4y) + 3(5x)(4y)2
Solve the exponential forms
= 125x3 - 64y3 - 3(25x2) (4y) + 3(5x)(16y2)
Solve multiplication process and we get:
= 125x3 - 64y3 - 300x2y + 240xy2
Hence (5x - 4y)3 = 125x3 - 64y3 - 300x2y + 240xy2
C) (9x - 5y)3
Apply the value to identity i.e. (a - b)3 = a3 - b3 - 3a2b + 3ab2
(9x - 5y)3 = (9x)3 - (5y)3 - 3(9x)2 (5y) + 3(9x)(5y)2
Solve the exponential forms
= 729x3 - 125y3 - 3(81x2) (5y) + 3(9x)(25y2)
Solve multiplication process and we get:
= 729x3 - 125y3 - 1215x2y + 675xy2
Hence (9x - 5y)3 = 729x3 - 125y3 - 1215x2y + 675xy2
D) (13x - 7y)3
Apply the value to identity i.e. (a - b)3 = a3 - b3 - 3a2b + 3ab2
(13x - 7y)3 = (13x)3 - (7y)3 - 3(13x)2 (7y) + 3(13x)(7y)2
Solve the exponential forms
= 2197x3 - 343y3 - 3(169x2) (7y) + 3(13x)(49y2)
Solve multiplication process and we get:
= 2197x3 - 343y3 - 3549x2y + 1911xy2
Hence (13x - 7y)3 = 2197x3 - 343y3 - 3549x2y + 1911xy2
E) (15x - 9y)3
Apply the value to identity i.e. (a - b)3 = a3 - b3 - 3a2b + 3ab2
(15x - 9y)3 = (15x)3 - (9y)3 - 3(15x)2 (9y) + 3(15x)(9y)2
Solve the exponential forms
= 3375x3 - 729y3 - 3(225x2) (9y) + 3(15x)(81y2)
Solve multiplication process and we get:
= 3375x3 - 729y3 - 6075x2y + 3645xy2
Hence (15x - 9y)3 = 3375x3 - 729y3 - 6075x2y + 3645xy2
F) (17x - 11y)3
Apply the value to identity i.e. (a - b)3 = a3 - b3 - 3a2b + 3ab2
(17x - 11y)3 = (17x)3 - (11y)3 - 3(17x)2 (11y) + 3(17x)(11y)2
Solve the exponential forms
= 4913x3 - 1331y3 - 3(289x2) (11y) + 3(17x)(121y2)
Solve multiplication process and we get:
= 4913x3 - 1331y3 - 9537x2y + 6171xy2
Hence (17x - 11y)3 = 4913x3 - 1331y3 - 9537x2y + 6171xy2
G) (19x - 13y)3
Apply the value to identity i.e. (a - b)3 = a3 - b3 - 3a2b + 3ab2
(19x - 13y)3 = (19x)3 - (13y)3 - 3(19x)2 (13y) + 3(19x)(13y)2
Solve the exponential forms
= 6859x3 - 2197y3 - 3(361x2) (13y) + 3(19x)(169y2)
Solve multiplication process and we get:
= 6859x3 - 2197y3 - 14079x2y + 9633xy2
Hence (19x - 13y)3 = 6859x3 - 2197y3 - 14079x2y + 9633xy2
|
Related Question Examples
Solve the following equations using (A - B) Cube formula
A) (2x - 3y)3
B) (5x - 4y)3
C) (9x - 5y)3
D) (13x - 7y)3
E) (15x - 9y)3
F) (17x - 11y)3
G) (19x - 13y)3 |
|
|