Arithmetic
Additive Identity
Arithmetic Progression
Associative Property
Averages
Brackets
Closure Property
Commutative Property
Conversion of Measurement Units
Cube Root
Decimal
Distributivity of Multiplication over Addition
Divisibility Principles
Equality
Exponents
Factors
Fractions
Fundamental Operations
H.C.F / G.C.D
Integers
L.C.M
Multiples
Multiplicative Identity
Multiplicative Inverse
Numbers
Percentages
Profit and Loss
Ratio and Proportion
Simple Interest
Square Root
Unitary Method
Algebra
Cartesian System
Order Relation
Polynomials
Probability
Standard Identities & their applications
Transpose
Geometry
Basic Geometrical Terms
Circle
Curves
Angles
Define Line, Line Segment and Rays
Non-Collinear Points
Parallelogram
Rectangle
Rhombus
Square
Three dimensional object
Trapezium
Triangle
Quadrilateral
Trigonometry
Trigonometry Ratios
Data-Handling
Arithmetic Mean
Frequency Distribution Table
Graphs
Median
Mode
Range

Videos
Solved Problems
Home >> Numbers >> Real Numbers >> Difference between Rational and Irrational Numbers >>

Difference between Rational and Irrational Numbers

Rational Numbers Irrational Numbers Difference between Rational and Irrational Numbers

Before you understand the difference between rational and irrational numbers, you are advised to read:

What is Ratio ?
What are Integers ?

Rational Numbers: A rational number is the one which can be written in the form of p/q , where both p & q are integers and q is not equal to zero

Few examples of rational numbers are 2/3, -28/31, 3/-8, -100/-110

Irrational Numbers: An irrational number is the one which cannot be written in the form of p/q .

For example: √ 13, √ 15 , √ 10 , Π (pie)

Copyright@2022 Algebraden.com (Math, Algebra & Geometry tutorials for school and home education)