Arithmetic Additive Identity Arithmetic Progression Associative Property Averages Brackets Closure Property Commutative Property Conversion of Measurement Units Cube Root Decimal Distributivity of Multiplication over Addition Divisibility Principles Equality Exponents Factors Fractions Fundamental Operations H.C.F / G.C.D Integers L.C.M Multiples Multiplicative Identity Multiplicative Inverse Numbers Percentages Profit and Loss Ratio and Proportion Simple Interest Square Root Unitary Method
Algebra Cartesian System Order Relation Polynomials Probability Standard Identities & their applications Transpose
Geometry Basic Geometrical Terms Circle Curves Angles Define Line, Line Segment and Rays Non-Collinear Points Parallelogram Rectangle Rhombus Square Three dimensional object Trapezium Triangle Quadrilateral
Trigonometry Trigonometry Ratios
Data-Handling Arithmetic Mean Frequency Distribution Table Graphs Median Mode Range
Videos
Solved Problems
|
Home >> Standard Identities & their applications >> a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca) >> (A Cube + B Cube + C Cube) - 3abc
Before you understand a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca), you are advised to read:
How to multiply Variables ?
How to multiply Constant and Variable ?
Multiplication of Polynomials ?
What is Exponential Form and Laws of Exponents ?
How this identity of a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca) is obtained:
Taking RHS of the identity:
(a + b + c)(a2 + b2 + c2 - ab - bc - ca )
Multiply each term of first polynomial with every term of second polynomial, as shown below:
= a(a2 + b2 + c2 - ab - bc - ca ) + b(a2 + b2 + c2 - ab - bc - ca ) + c(a2 + b2 + c2 - ab - bc - ca )
= { (a X a2) + (a X b2) + (a X c2) - (a X ab) - (a X bc) - (a X ca) } + {(b X a2) + (b X b2) + (b X c2) - (b X ab) - (b X bc) - (b X ca)} + {(c X a2) + (c X b2) + (c X c2) - (c X ab) - (c X bc) - (c X ca)}
Solve multiplication in curly braces and we get:
= a3 + ab2 + ac2 - a2b - abc - a2c + a2b + b3 + bc2 - ab2 - b2c - abc + a2c + b2c + c3 - abc - bc2 - ac2
Rearrange the terms and we get:
= a3 + b3 + c3 + a2b - a2b + ac2- ac2 + ab2 - ab2 + bc2 - bc2 + a2c - a2c + b2c - b2c - abc - abc - abc
Above highlighted like terms will be subtracted and we get:
= a3 + b3 + c3 - abc - abc - abc
Join like terms i.e (-abc) and we get:
= a3 + b3 + c3 - 3abc
Hence, in this way we obtain the identity i.e. a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
Let's try the following examples of this identity
Example: Solve 8a3 + 27b3 + 125c3 - 30abc
Solution: This proceeds as:
Given polynomial (8a3 + 27b3 + 125c3 - 30abc) can be written as:
(2a)3 + (3b)3 + (5c)3 - (2a)(3b)(5c)
And this represents identity:
a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
Where a = 2a, b = 3b and c = 5c
Now apply values of a, b and c on the L.H.S of identity i.e. a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca) and we get:
= (2a + 3b + 5c) { (2a)2 +(3b)2 + (5c)2 - (2a)(3b) - (3b)(5c) - (5c)(2a) }
Expand the exponential forms and we get:
= (2a + 3b + 5c) {4a2 +9b2 + 25c2 - (2a)(3b) - (3b)(5c) - (5c)(2a) }
Solve brackets and we get:
= (2a + 3b + 5c) {4a2 +9b2 + 25c2 - 6ab - 15bc - 10ca}
Hence, 8a3 + 27b3 + 125c3 - 30abc = (2a + 3b + 5c) (4a2 + 9b2 + 25c2 - 6ab - 15bc - 10ca)
|
|